Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting
نویسندگان
چکیده
منابع مشابه
Nonlinear oscillations of a sessile drop on a hydrophobic surface induced by ac electrowetting.
We examine the nature of ac electrowetting (EW)-driven axisymmetric oscillations of a sessile water drop on a dielectric substrate. In ac EW, small-amplitude oscillations of a drop differ from the Rayleigh linear modes of freely oscillating drops. In this paper, we demonstrate that changes in the time-averaged contact angle of the sessile drop attributed to the presence of an electric field and...
متن کاملa study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
Shape of a sessile drop on a flat surface covered with a liquid film.
Motivated by the development of lubricant-infused slippery surfaces, we study a sessile drop of a nonvolatile (ionic) liquid which is embedded in a slowly evaporating lubricant film (n-decane) on a horizontal, planar solid substrate. Using laser scanning confocal microscopy we imaged the evolution of the shape of the liquid/liquid and liquid/air interfaces, including the angles between them. Re...
متن کاملSpontaneous oscillations of a sessile lens
When an oil drop is placed on a water surface, it assumes the form of a sessile lens. We consider the curious behaviour that may arise when the oil contains a water-insoluble surfactant: the lens radius oscillates in a quasi-periodic fashion. While this oscillatory behaviour has been reported elsewhere, a consistent physical explanation has yet to be given. We present the results of an experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2014
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.90.033017